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I. SUMMARY.

The triangle test has been used very frequently in sensory difference

testing. Attempts have been made to augment the basic information from triangle

tests with scores on degree of difference between the sample selected as the

variant and the remaining two. In this paper a mathematical model has been

developed to permit formal utilization of the degree of difference scores.

It is assumed that a stimulus-response scale exists and that two standard

samples and one variant sample evoke responses xl, x 2 and y on this scale. These

2
responses are taken to have independent normal distributions with variances a and

means zero for the x-variates and mean it for the y-variate. Conditional distribu-

tions for degree of difference scores are obtained, the likelihood function for N

independent trials of the triangle test is developed, and a procedure for testing

that . = 0 is given,

The procedure considered is designated as the modified triangle test and

illustrations of its use are shown.

iResearch supported by the Army, Navy and Air Force under an Office of Naval Research
Contract. Reproduction in whole or in part is permitted for any purpose of the

2 United States Government.
The assistance of a National Science Foundation Grant to the Florida State Univ-
ersity Computing Center is acknowledged.
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II. INTRODUCTION.

Sensory difference tests are used frequently in many situations involving

the subjective responses of individuals. These tests may be used for the main-

tenance of quality, the detection of adulterants, the substitution of ingredients,

the screening of product variants, the measurement of sensitivities of individuals,

and the selection of test panels. The triangle test is perhaps the most frequently

used of the simple sensory difference tests and is the subject of this paper.

There has been a certain amount of confusion in the literature on the

choice of an appropriate sensory difference test. Experimental comparisons have

been made, for example, by Liebmann and Panettiere [1957]. Mathematical and

statistical comparisons have been made by Hopkins and Gridgeman [1955], Radkins

[1957], Ura [1960] and Bradley [1958, 1963]. These comparisons suggest the use

of the triangle test in most situations where a simple procedure is required.

Efforts have been made to modify the traingle test in order to obtain

improved performance in the detection of differences. Much of this work appears

to be unpublished but an example is given by Mahoney, Stier and Crosby [1957].

The basic triangle test can be discussed in terms of discrimination between a

standard product and a variant from that standard. A group of N respondents are

each presented a traingle test. The presentation involves two samples of the

standard and one of the variant, all unidentified, and it is the task of the

respondent to select the variant sample from the three samples on the basis of the

sensory characteristic under study. In the modifications of the triangle test

considered, an additional task is imposed on the respondent. For the modified

test, the respondent not only must select the variant sample but must also "score"
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the "degree of difference" present. This is usually done on the basis of a crude

scale implying that the difference is "slight," "moderate." "easily detectable,"

"i'extreme," etc. In past use of the modified triangle test, it appears that the

scores provided have been used largely as a qualitative check on the test rather

than for specific analysis.

It is the purpose of this paper to provide a method of analysis for

modified triangle tests. In providing this method, certain assumptions are made

that require further study but it is believed that a useful technique has been

developed to improve sensory difference testing.

III. FORMULATION OF THE PROBLEM.

A basis for the analysis of modified triangle tests has been provided

by Bradley and Ura in the papers cited. Furthermore, that work indicated that

the resulting analysis may not be too sensitive to the assumptions made.

Following Bradley [1963] we suppose a conceptual, sensory-difference,

stimulus-response scale for sensory sensations of respondents in difference

testing. Assume that responses to the standard samples are normally distributed

2
with mean zero (the origin of such a scale is arbitrary) and variance a . The

responses to the variant are likewise assumed to be normally distributed with

variance U2 but with mean t. All these stimulus responses are taken to be

stochastically independent. Let the two responses to the standard be x1 and x2

and the response to the variant be y. Whether or not the respondent correctly

selects the odd or variant sample from the three is assumed to depend on the con-

figuration of the responses x1V x2 and y. Twelve possible configurations may be

obtained and are designated by C1,...1C 1 2 as follows:
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C x I < x 2 <I < y - x2; C7: Y< < x < x 2V xI - y < x 2 - xl;

C2 : x 2 < xI < Y, x1 " x2 < Y xl; C8 : Y < x 2 < xl, x 2 - Y < xI 2;

C3 : Y < x1 < x2  2 X x 1 - y; C9: x1 < y < x2V x2 -y < Y -xl

C4: Y < x ,2 < Xl x 1 x2 < x2 - y;4 2 1I022: x2 K y K Xl, xI - y K y -x2

C5 : xI < x2 < Y -Y x2 < x 2 - Xl;CII xC I < y < x2 x 2 - Y;

C6 : x2 < xI < Y -Y xI < x 1 - x2 01Y2: X 1 Y .<"1 12" x2 < l 2 1 Xl-Y.

The first four of tbese configurations lead to correct selection on the triangle

test and the score on degree of difference is taken to approximate to

R = ly - ½(xI + x2 )J. The last eight of these configurations lead to incorrect

selection and the score on degree of difference measures either W = xl1 -½(y + X2)1

or W =x 2 - ½(y + Xl)f. In the following work it is assumed that R and W have

distributions based on the indicated functions of normally distributed variates

even though observed values of R and W are imperfectly measured on discrete

scoring scales.

At this stage note that data from N modified triangle tests will appear

as scores, RI,...Rm , WI,...,Wn, m + n = N, in some order with m and n themselves

random variables. On the basis of such data, a test of significance is developed.

The null hypothesis is that . = 0, there is no difference between standard samples

and variant samples on the basis of the sensory attributes under study. The

alternative hypothesis is that p. 0 0. The hypothesis that V = 0 is equivalent,

of course, to the more standard statement that the probability of correct

selection of the variant sample is 1/3, a selection based on chance alone. If

pA is the probability that correct selection be made, pA is related to k./a as

given by Bradley [19631:
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00

2 3y22 2i i-()
e ,3 (/3 f U du.

i=O P(i + k) 3 (1 + u)i

(Bradley and Ura have given tables associating values of p, with values of P/U

The next section deals with the problem of obtaining distributions of R and W

based on the assumptions made.

IV. DISTRIBUTIONS OF DIFFERENCE SCORES.

Tho joint likelihood function of RI•.o3R WI,...,Wn may be built up

from the conditional distributions of R and W given the appropriate configurations

from C1 -,.oC 1 2 ' Configuration Cl leads to a value of R and we develop now the

conditional probability density function of R given C in some detail.

The conditional joint probability density function of x1, x 2 and y given

.l1 on the assumption of tbe normal distributions and independence, is

(2 -c 3/2 2 2 2 2f(21x•-,3/2 {I2 + x2  + (y _ ±)2)/2 (f~x~2Y~). ... e 1 (2)

x < 2 < YY, 2 "r . < 2- -y< Xl' X 2  y -< X

1ia.re P(CI) is ths probnahiiity of occurrence of configuration C1 . It is clear

that (2) follows from the Joint unconditional distribution of Xl, x2 and y which

differs from (2) only in the on•ission of the division by P(CI) and the first two

restricting inequalities following (2). An orthogonal transformation to new

variables r, s and t is mie'e with r = (2y - xI - x2 )/-6, s = (y + x1 + X2)/,r•



and t = (x2 x )/'2 . Then the joint probability density for the new variables is

2•2 3/2 2 2 2 (2s/) 2 2
f(r,s,tlc (21rcr e- (r + s + t - (4ir/;6) - [is/-, + e )/2a (3)

P(Cl)

<t < (ri) -c<s<

It is seea that r is related to the required R and integration with respect to s

and t leads to the marginal conditional distribution of r,

2- 2 2 2(21ra - fr2_ (4ýir/-F6) + (2ýt2/3))/2a2

f(rJC1 ) = p1€l) I(r/c -F) e-/ +(, (4)

0 < r < m. In (4) the function I is the incomplete standard normal integral,

a 2/2

l(a) = (2Tc)½ e -u du. (5)

0

Since R =y -I (x1 + x )I and r > 0, R = -F6 r/2 and the required conditional

probability density function for R is

f(RIC ) P(C 1 e(R - t)2 /3a 2 1(V R/3a) (6)f 1,C) - P(CI) e

0< R<co.

It follows from symmetry that f(RI C2 ) has the same form as (6) and indeed

P(C 2 ) = P(CI). f(RIC 3) and f(RIC 4) have the form of (6) but with t replaced by

-p. Accordingly, we may compound these conditional probability density functions

to obtain the probability density function of R given correct solution in the
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triangle test. Thus

4

f (RJý) = P(oi) f(RIC d
i=l

43•2) 2I( VR/3a• cosh (2piR/3a 2 ) e -(R 2 +2)/3a2 (7)
PA

4
0 < R < 00 pZ = F P(Ci) shown in (1).

We require also the conditional distribution of W for configurations

C5V...PC12. The joint conditional distributions of xlVx2 and y are written down

as for (2). We consider C5 in a little detail; now the orthogonal transformation

has r = (2xI - 2 - y)/VI, s as before and t = (y - x2 )/Y7. The insertion of W

comes since W - J• r/ -5. Steps similar to those for f(RICl) lead to

=(3iT2)-½e - (W - p)
2 /3a 2 1[ (- -w + I • (8)I, e(W I C5 ) ] F (85))

5 P(C 5) 3a T27F

with 0 < W < c.

From symmetry, f(WI C6 ) has the form (8) and f(WIC 7 ) and f(WIC 8 ) have the

form of (8) with Ii replaced by -p. and simplified since I(-a) = - l(a). For

f(WIC 9) , the transformation is the same as for (8) but the boundaries of the

region differ; however, the same steps give us

f(W( ) = -4W• - ) 2 /3a 2  I+ ( (S9 P(C 9) e L2 ~ K 3a +y5 a~j (9)
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0<W < W . f(WIC 1 0 ) has the form of (9) and f(WIC 11) and f(WIC 1 2) have the form

of (9) with k. replaced by -p.

The marginal conditional distribution of W given that the selection in

the triangle test is incorrect (denoted by Z) is available now as

4 (31tcr2 ) k 2 +I 12 ) /3c02 (p.w F1  + > i( r2W _ 4 (of(WI) = - cosh 2

0 < W < , pz- i- p=.

V. ESTIMATION AND DIFFERENCE TESTING.

With the mathematical developments of the preceding section, we may now

turn again to the problem of sensory difference testing. Suppose as before that

N triangle tests yield scored differences, RI,...,Rm, W1 ... .WnI m + n = N and

note that this implies m correct selections of the variant sample and n incorrect

selections. The likelihood function may be written as

L(RI,...,R , W•,...,W) n L

m pn [ n
P- , IT f (Ri •) p T f(W16Ii=l A i=l j

Use of (7) and (10) with possible simplifications gives

L = 4 -(37)N/2 aN e- E R. + E W )/313a e (4m + n)/12c2

M ( 2p..3 n 2
X 11 cosh (2IRi/3a IT cosh (p. W./3 1 )i--i j= =I

m n F/ V W. p.\/V Wj
X T I( - R./3a) IH I(- + )+I - (+I)i-1 j=i 3 a r2 3/ G"



While (11) is a difficult likelihood function, we shall proceed to develop itera-

tive procedures for maximum likelihood estimates of ' and a and to develop the

likelihood ratio, test of the null hypothesis, Ho: L = 0, versus the alternative,

H a 0.

The procedure that we have adopted is to maximize inL with respect to

e= p/LI and a, the reparameterization yielding minor simplifications. Then, with

k independent of 0 and a,

m 2 n 2)/ 2
lnL = k - N lna - ( R R + Z W.)/3a - (4m + n) 0 /12

1'

m n
+ E In cosh (20Ri/3a) + E In cosh (OW./3a)

1 1

m n [(fW fW

+ E In I (2Ri/3a) + Z in [I + - + I -' (12)1 1 IUJ3o • "

To simplify notation, we now let

I =+ I 3 + and I =-. I )r. (13)

Similarly, if

0 (a) e an 2 /

•+, = i + •- an 2,j = 3 0 " (14)

-/2Wj + an j ( ( '



10.

To maximize lnL (and L) and to obtain 0 and a the maximum likelihood estimators

of e and,,a(.t = a 0), the partial derivatives of lnL with respect to e and a

are set equal to zero. The resulting equations are

fl(0C)•=a••Cr lnL
m

=- Oa (4m + n)/6 + Z (2Ri/3) tanh (20Ri/3a)

i=l

n

+ X (W./3) tanh (OWj/3a)
j=l

n

+ (a/V2) )/((+ - _,)I(I+, + 1 =0 (15)

j=l

and

f,(e, ) a o--- inL
m n

= - N + (2/3a2 )( ZR 2 + ZWj2)
Mi=l 1 =i

mj=

_ 7 (20R./3a) tanh (2eR./3a)
4, 1

i~l

n

- (eWj/3) tanh (OWj/3a)

j=l

m

- Z (1 R/13a) 0 (V- Ri/3a) I (,r R1/3a)

LJ=l
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n

z (-2W/3ca +j +- )/(I,- + I j) = 0. (16)
j=l

These equations are solved iteratively (and quite easily with an electronic

computer). The usual procedure is followed, namely to use initial estimates

° and a o solve the linear equations,

fl(O,e)hfl(0o, ao) + '-0 ) f -- o + L=, (17)
o•-0 0 r Co e, C° (17)

and

f2 (Oa).'f2 (eo, +) -£O f2 -Aa f2l 021 (18)

for 6G and Aa, and obtain 01 = 0 + LO and o1 = 0 + zA as improved estimates.

The procedure is repeated until satisfactory convergence to 0 and a is obtained.

The required derivatives-for (17) and. (18) are:

m

1 - a(4m + n)/6 + a (2Ri/30)2 sech2 (2e R1/30)
i=l

n n

"+ a I (Wj/3a) 2 sech2 (OWj/3z) - (a/2) I (Dj - /,)/(+,j + _,j)2

j=1 jl1

"+ (a/2) (o+, + • l(D+' MI I-j)

j=l
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m

1 O 9(m + n)/6 (9/ar 2 )7 (2Ri/3)2 sech 2(20 R./3ca)

(G /C2) 3 (/) 2 sech 2 (e w./3a)
j =1
n

j =1
n

7'2 .2 2+ x (W./ 3a)(&~ O, 0- A .)/(I+, + I- .)

n

(w 7 /3y)( D$- M )/I + I .
Li 0+,J -1i +,j -

~2 ="l - f /a, (19)

and

-(1/ay) -(4/3a X)R( + w + (2e R /3a) tanh (e 3r

i=1 ~ ~
rn n

+ ,(2e R ./3a) 2sech 2(2e R /3a) + x O 3)tanh (eW./3a)
i=1 j =1

n

+ OW 3 W/3ay)2 sech 2 (OW.i/3a)

j=1

m

+ (Y'2Ri/3a) 0 (T2R./3a)/I(-F2R./3cr)
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m

+ j (V2Ri/3a) 2 0'(V-iRi/3a)/I(-F2Ri/3a)
i=l

m

"- (,Ri/3c )2 )2 (1rRi/3a)/1 2 (-vRi/3a)
i=l

n

"+ , (-FWj/3o) ((+,j + 0._j)/(I+M I ++ I - )

j=l

n

"+ i (rWj/3) 2 ( + ' )I(I M + I-)

j=l

n

j (V W W/3a)
2  (2+,j + D_ A )l + A 2

j=l

Note that if the information matrix leading to asymptotic variances and covariance

of 0 and a is required, this may be computed easily at the last stage of iter-

ation since 21nL/O 2 = I•fl•O)/cx, 62 lnL/a0ea = [(ýfl/MG) - (fl/a)]/a , and

•21nL/ 2 = [(f2AG)- (f 2 /a)]/a.

Initial values 00 and 0 may be obtained in various ways. Examples con-

sidered have shown quite rapid convergene to e and a even when e0 and a are

quite poor first approximations. An easy procedure for obtaining e0 is to take0

m/N as an estimate of p n and to read 0° = •o/ao from Table I of the paper by

Bradley [1963]. A satisfactory value for a may be obtained by examination ofO

the range of the R. and W. but an additional method is given in the appendix.
i 3
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When e and a have been obtained, the maximum of lnL is calculated.

In order to develop the required likelihood ratio test, we need also to

obtain the maximum likelihood estimator of a given that i = 0 or e = 0. Careful

computer programming can include this case in the general estimation procedure or

a simpler program may be developed. When 0 = 0, inL in (12) is considerably

simplified and the equation to be solved is f2(Oa) = 0. This solution is devel-

oped iteratively again from the linear equation in La from (18),

f 2 (0,a),ý.f 2 (Oo) + A, f2 1_ (20)-!
0

with ýf2 /Ny at (0,a) obtainable from (19).

If we denote the value of a that maximizes L given 0 = 0 by a, the

maximum of lnL is obtained through substitution of (0,') for ( e, o) in lnL.

The usual asymptotic theory is used for the test of--significance. If X

is the likelihood ratio,

2 In 2, 2[l InLI (21)

is taken to have the X 2 distribution with one degree of freedom.

VI. NUMERICAL EXAMPLES.

Data for N = 44 modified triangle tests together with scored "degree of

difference" are given in Table 1. The scoring scale used is no difference : 0,

very slight difference : 2, slight difference : 4, moderate difference : 6, large

difference : 8, and very large difference : 10, The triangle tests compare an
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TABLE 1.

SCORES ON DEGREE OF DIFFERENCE ON CEREAL TESTS3

R, Scores for Correct Tests W, Scores for Incorrect Tests

2 4 2

4 6 6 2

.2 2 6 2

8 3 6 2

6 4 2 2

6 4 0

2 2 6

2 2 4

6 0 6

2 0

2 2

4 2

8 0

0 5
4 4

3Data provided through the courtesy of the Division,
Corporation by Mr.
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experimental cereal with a control cereal and some triangle tests involved two

samples of the control cereal with one of the experimental and some tests used

one control sample and two experimental samples. Note that M = 20 and n = 24.
A A

To obtain e and a, the iterative procedure of equations (17) and (18)

was initiated with arbitrarily selected values, 60 = 1, a0 = 2.5. The IBM 709

computer was used with instructions to terminate iterations when successive

values of e and a agree to the seventh decimal place. Successive values of @,a

and InL to four-place accuracy are given in Table 2. To obtain a given e = 0,

the initial value of a was again 2.5; values to four-place accuracy with values
0

of inL in this case also are given in Table 2. The test statistic is computed

from (21),

- 2 inL X =- 2 [-116.1963 - (-114.1305)] = 4.1316

2_
and comparison with X -tables with one degree of freedom indicates that this value

comes at approximately the .044 level of signigicance.

If the usual triangle test had been used, a one-sided test of significance

would have been performed with the null hypothesis being H : p, = 1/3 and the

alternative being Ha: pL> 1/3. Using N = 44, m = 20 and the normal approximation

to the binomial with continuity correction, we have

m - (N/3) + 1/2 3(20 - 14.6667 - .5) . 1.5457

9

with gignificance level .061. The confidence interval on p.with confidence

coefficient .95 by the usual methods is (.307,602).



17.

TABLE 2

PARAMETER VALUES AND lnL FOR SUCCESSIVE ITERATIONS

Iteration Alternative Hypothesis Null Hypothesis e = 0

e 0 inL a InL

0 1 2.5 2.5

1 1.2581 1.8825 - 114.8550 2.4859 - 116.1963

2 1.1186 2.0639 - 114.1520 2.4-860 - 116.1963

3 1.0820 2.1054 - 114.1306 2.4860 - 116.1%63

4 1.0809 2.1069 - 114.1305 ........

5 1.0809 2.1069 - 114.1305
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A confidence interval and estimate of pA may be obtained from the modified

triangle test. We have our estimate of e as 1.0809 from Table 2. Using Table I

of the reference, Bradley t19631, we equate e with /c/a in column 1 and interpolate

in column 2 to find = .431. A confidence interval on 9 may be converted into

a confidence interval on pL. The computer program produces the required partial

derivatives of f and f2 so that the matrix,

- /
2 lnL 2 2nL 18.4175 20.2982(•2 2

2 lnL - I21nL 20.2982 43.8007

L

may be easily computed. The inverse of this matrix, from large-sample theory on

maximum likelihood estimators, gives the variance-covariance matrix for 9 and a

This matrix is

0.11098 - .05143

-. 05143 .04666
A

so that (0 - 0) may be taken as normal with zero mean and variance .11098. The

.95-confidence interval on 0 is evaluated easily as (.4280, 1.7338) and the

corresponding interval on p A is (.350, .552).

Harmon [1963] used a made-up example wherein the values of x1 and x 2 were

taken from a table of random normal variates with mean zero and variance unity

whereas the values of y were c•hosen similarly but from a population with mean

1.5 and variance unity. In his example, N = 20, m = 9 and n = 11. He found
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'A

e = 1.7097 and a = .9699 under Ha and ' = 1.3620 under H . For this example,
20

X 1 =- 2 in X 4.358 for the modified triangle test and the normal deviate

u = .870.for the conventional binomial triangle test. The estimates of pz were

respectively .547 and .450 while the true value of p for the populations sampled

is .5065.

The example worked by Harmon appears to give satisfactory estimates of the

known parameters of the population sampled and to suggest that improved test

power may be attributed to the modified triangle test. The example of Table 1

seems also to be satisfactory in that higher significance is obtained with the

modified triangle test in comparison with the simple triangle test and a shorter

confidence interval is obtained on p . One cannot judge the merits of the modified

triangle test procedure on the basis of one or two examples. Extended experience

or mathematical investigations should show that the modified triangle test is

more powerful than the simple triangle test in the detection of differences in

sensory testing.

VII. INDETERMINATE FORMS IN COMPUTATIONS.

The theory of the preceding sections is based on a model that attributes

probability zero to the occurrence of zero-values of R. or W.. However, in
J

practice as in Table 1, zero-values do occur from the discreteness of scoring

scales used. Unless consideration is given to this in computer programming,

difficulties will occur.

If an R. or W. is zero, indeterminancies occur in fl, f2 1 ýf l /ý0, f

6f2/ýO and f 2/ a. Programming should be done so that, if Ri or W. is zero, the

2 2 1
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appropriate limits replace the indeterminate forms. The necessary Umits are as

follows:

lim xo(x)/I(X) = 1, (22)
X--)ýO

lim, -x[O+ + (D-1/[I + + Ij (23)
x-+O

lim i, + i- e I-F2, (24)
X-0

lim [(D+ t]2/[,+ + _]2 e 2 /2., (25)
X-0

lim 0' + (D*'] I + 1_ le 2 - 1 (26)
X-0 + + 2

2 2 2
lim X[O+ - 0_ I+ + e I-F2, (27)
X-0

lim, x[ (D']/[i + i el.F2 (28)
X-0 

+

lim x 2 0'(X)/I(X) 0, (29)
X--*O

lim x 2 (D 2 W/I 2 W 1ý (30)
X-0

lim x 2 + 0'1/(1 + 1 0,
X--)10 - + J 

(31)

and

lim x 2 [tD+ + (D_1 2 /[1 + + Ij 2 = 1. (32)
X--).O

Rules must also be developed in computing the maximum of JnL. Subroutines

fore.computers for logarithms usually write InO = 0 and this is not satisfactory.

Consider lnL in (12) and note that to calculate -21nX in (21), some rules for
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lim [in I(xia) - in I(x/')] = In - inr
x_+0

and
xr i f e x in2_

im (in [I x +-) + (in 2 1 (xi•)]

=^ l1 n
2

must be devised. It is satisfactory to program the computer so that

in I(x/a) - ina (33)
lx=0

and

1 9 2. (34)

,f~i x=O

These rules seem to be the simplest workable ones and yield the proper value

of - 2 in X; note that if zero-values of R. and W. are replaced by a small number,1 J

say .001, different values of lnL will be obtained than with the above rules but

approximately the same value of -2 lnX will result. These rules have been used

in the first example of the preceding section.

VIII. DISCUSSION.

The procedures for the modified triangle test hold the possibility of

improved efficiency in sensory difference testing. It is true that numerical work

is greatly increased in the analysis in comparison with the simple triangle test;

however, electronic computers are now widely available and once a computer program

is developed, application of the modified triangle test is easy. The example
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given in this paper is shown in sufficient detail to check on progranuing and may

be used for this purpose.

Further investigation of the modified triangle test could be useful. Con-

sideration of power, either by asymptotic theory for large N or by Monte Carlo

techniques, would be desirable. The effects of discreteness in degree-of-

difference scores in comparison with the model used should not be serious but

might be investigated. Routine use of modified triangle tests should lead to

experience in their merits relative to simple triangle tests and such experience

should be reported in subject matter literature.

Bradley [1963] shows the association between triangle tests and duo-trio

tests. A modified duo-trio test could be developed in just the same way as for

the method of this paper for the modified triangle test but evidence to date

suggests that the triangle test should be used in preference to the duo-trio test.

IX. ACKNOWLEDGEMENTS.

The authors are pleased to acknowledge the assistance of the Office of

Naval Research in support of this work and of the National Science Foundation

in support of the Florida State University Computing Center. The assistance of

Dan C. Stone and Henry J. Noble on programming problems facilitated work on the

examples. We are also indebted to the and to Mr.

for permission to use the data of Table 1.



23.

REFERENCES

R. A. Bradley [19581. Triangle, duo-trio, and difference-from-control tests in
taste testing. Bicomietrics 14, 566 (abstract).

R. A. Bradley [1963]. Some relationships among sensory difference tests.
Biometrics 19, in press.

Tom J. Harmon [1963]. The Modified Triangle Test. M.S. Thesis, Florida State
University Library, Tallahassee, Florida, U.S.A.

J. W. Hopkins and N. T. Gridgeman [1955]. Comparative sensitivity of pair and
triad flavor intensity difference tests. Biometrics 11, 63-8.

A. J. Liebmann and B. R. Panettiere [1957]. Quality control and consumer testing
for distilled alcoholic beverages. Wallerstein Lab. Comm. 20, 27-37.

C. H. Mahoney, H. L. Stier and E. A. Crosby [1957]. Evaluating flavor differences
in canned foods. Food Tech. 11, Part 2, 29-36.

Andrew P. Radkins [1957]. Some statistical considerations in organoliptic research:
triangle , paired, duo-trio tests. Food Res. 22, 259-65.

Shoji Ura [1960]. Pair, triangle, duo-trio test. Reports of Statistical Applica-
tions Research 7, Japanese Union of Scientists and Engineers, 107-19.



24.

"APPENDIX

MOMENTS OF R AND W

We have considered first and second moments of R and W and they yield very

cumbersome general expressions. However, when ýi (or 8) is zero, these expressions

reduce and permit an estimate of a that may be used in the iterative procedures

developed for maximum likelihood estimation as an initial trial value.

We obtain E(RIAL , = 0), E(WIJ, JA = 0), E(RmJA ý = 0), and E(W2 I Z[ = 0)

by straight-forward integration after polar transformation using (7) and (10):

2p .E(R jA , ýL 0 ) = p 7E (W IZ , I' = 0)

A-o

00

fRI (3aR eR2 3adR

0

-F3 c _/r •,(Al)

2pAE(R 2 1A, bI 0) PZE(W2  , = 0)

00

FR0 RI 2- 13)3 e dR

G2 [I + (3T1/2ir)]. (A2)

Let D be the unconditional random variable representing degree of difference so that

D = R when the triangle test is correct and D = W when the triangle test is in-

correct. Then
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E(DI . = 0) = pAýE(RfA, . = 0) + pLE(WfA, p = 0)

= 3T o/2 V (A3)

from (Al). Similarly,

E(D 2• = = )= (3 2 /2) + (9_j2/ 4,r) (A)

from (A2). The variance of D, given [1 0, in the usual way is

N(DJp. = 0) = (3a2 /2) - (9/5o2/4c)(3 - 1) = .591902.

An initial value o'i a may be obtained by computation of the sample variance

of Rl,...,Rm, WI,...,W with these observations taken as a single sawple of size
I n 2 s2 -

111n. If this sample variance is s 2 equate s to V(Djp. = 0) and obtain

o = s / /.5919 . (A5)

It appears that a obtained in this way should be a satisfactory initial estimate

of a for use either in (17) and (18) or in (20). The maximum likelihood estimates

of a do not appear to differ greatly whether or not e is taken to be zero in the

iterative processes and in general a is only a little greater than a.


